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A new method is developed for approximating the scattering of linear surface gravity
waves on water of varying quiescent depth in two dimensions. A conformal mapping of
the fluid domain onto a uniform rectangular strip transforms steep and discontinuous
bed profiles into relatively slowly varying, smooth functions in the transformed
free-surface condition. By analogy with the mild-slope approach used extensively in
unmapped domains, an approximate solution of the transformed problem is sought
in the form of a modulated propagating wave which is determined by solving a
second-order ordinary differential equation. This can be achieved numerically, but an
analytic solution in the form of a rapidly convergent infinite series is also derived and
provides simple explicit formulae for the scattered wave amplitudes. Small-amplitude
and slow variations in the bedform that are excluded from the mapping procedure are
incorporated in the approximation by a straightforward extension of the theory. The
error incurred in using the method is established by means of a rigorous numerical
investigation and it is found that remarkably accurate estimates of the scattered wave
amplitudes are given for a wide range of bedforms and frequencies.

1. Introduction
A variety of methods has been developed in recent years to determine the

scattering of linear surface water waves over undulating beds in two dimensions.
If the undulations are of small amplitude or slowly varying, accurate estimates of
the scattered wave amplitudes are provided by the relatively simple approximations
of the ‘mild-slope’ type. A recent entry into an extensive literature in this area
is provided by Porter (2003). For undulations that are not restricted in this way,
however, considerably more effort is required to resolve the scattering process to the
extent that the methods that have been devised are generally targetted at providing
accurate solutions by computational means. We will give examples of these methods
later.

The aim of the present work is to develop an approximation technique for any bed
shape that has the simplicity of the mild-slope approach, whilst retaining a level of
accuracy that is adequate for most practical purposes.

The essential difficulty in the problem is the application of a Neumann condition,
representing zero normal flow, on a bed profile of a general shape. By conformally
mapping the fluid domain into a strip of uniform width in such a way that the bed
profile transforms to a coordinate line, this difficulty is removed and the bed condition
can now easily be satisfied exactly. Although the transformation process complicates
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the usual mixed boundary condition at the free surface by introducing a variable
coefficient there, the effect of steep and even discontinuous bedforms is distributed
across a comparatively wide interval in the revised free-surface condition.

The idea of using conformal mappings in this way is not new and was implemented
by Fitz-Gerald (1976), who devised integral equation techniques to solve the resulting
potential problem in the transformed plane. Shortly afterwards Hamilton (1977) used
the mapping technique to develop a nonlinear formulation of the problem whose
long-wave limit results from the zeroth-order approximation to the solution. Both
Fitz-Gerald (1976) and Hamilton (1977) presented several families of mappings which
both demonstrate that the method can be applied to a wide range of bedforms and
illustrate the property that a rapidly varying bed shape is transformed into a relatively
slowly varying free-surface condition.

Evans & Linton (1994) took advantage of this property by using a piecewise-
constant approximation of the transformed free-surface condition in conjunction
with the exact solution of Weitz & Keller (1950), derived for the case in which
there is a single jump between two constant free-surface states. Evans & Linton
obtained impressive results for the scattered wave amplitudes by comparison with
those obtained using other methods, in a number of test problems and for a selection
of parameter values.

Our approach is different from those of Fitz-Gerald (1976), Hamilton (1977) and
Evans & Linton (1994). We exploit the fact that large gradients in the bed shape are
mapped to smaller gradients in the free-surface condition by assuming the latter to
be sufficiently slowly varying that an approximation of the ‘mild-slope’ variety can
be applied. Thus, at each horizontal location the vertical dependence is imposed on
the solution that corresponds to a propagating wave at the local version of the free-
surface condition. The effect of this approximation is therefore to seek a propagating
wave solution that is modulated by the variations in the free-surface condition. To
implement it we use a variational principle in the spirit of the Rayleigh–Ritz method
and this process both removes the vertical coordinate from the proceedings and has
a ‘smoothing’ effect. We therefore obtain a vertically averaged approximation which
is completed by solving a second-order ordinary differential equation and this can
be achieved numerically. However, we also develop an analytic solution in the form
of an infinite series, by using an integral equation method, with the ultimate aim of
giving simple explicit formulae for the amplitudes of the scattered waves.

Despite the range of mappings developed by Fitz-Gerald (1976), not all bedforms
can be dealt with in this way, of course, and we therefore extend the technique to
encompass a larger class of profiles. We therefore envisage a bedform consisting of
steep components, which can be mapped into a uniform strip, and slow variations
about this which distort the transformed domain and appear in the transformed bed
condition. The method already described may be carried over with an adjustment to
deal with the revised bed condition. Again the problem is reduced to an ordinary
differential equation, which now includes as a special case the conventional mild-slope
equation derived originally by Smith & Sprinks (1975) and Berkhoff (1976) and in
its extended form by Chamberlain & Porter (1995). The significance of a judicious
choice of scaling, which led to the recent simplified version of the mild-slope equation
identified by Porter (2003), is transparent in the present development.

Our objective is to obtain a simple approximation for a wide range of bedforms
and wave frequencies and not to derive the exact solution. If the latter is required,
existing methods may be used without introducing the complication of the mapping
procedure. These include the integral equation method of Porter & Porter (2000),
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the multi-mode extension of the mild-slope equation developed in a succession of
papers including those by Massel (1993), Porter & Staziker (1995), Athanassoulis &
Belibassakis (1999) and Chamberlain & Porter (2006), and discretization methods
such as the finite element and boundary integral techniques, the essential features of
which can be found in Mei (1983). Each of these requires sophisticated numerical
algorithms and considerable computational effort. For this reason we do not pursue
the multi-mode version of the current approach, which is easily formulated but can
only reproduce results that are already available using established methods.

One requirement of the present work, therefore, is a thorough investigation of
the error incurred by the method and we are able to carry this out by reference to
particular bedforms. Especially useful in this context is a profile for which there is
both a conformal mapping and an exact solution, identified by Roseau (1976) and
extended using a different approach by Evans (1985).

The plan is to formulate the problem in the physical and transformed plane in
§ 2, considering at this stage only bedforms that map onto a strip of uniform width.
The approximation is developed for this case in § 3, together with the derivation of
the analytic solution, a description of the numerical solution method and a set of
examples, including a rigorous error estimate based on numerical experiments. In § 4
the extension of the theory is given to the case in which the bedform varies about a
profile that can be mapped conformally, with a further example.

2. Formulation
We are concerned with two-dimensional scattering and use Cartesian coordinates

x, y, arranged so that y is measured vertically upwards from the undisturbed free
surface. The bed is given by y = − h(x) for −∞ <x < ∞, where the function h is such
that

h(x) →
{

h(−∞) = h0, x → −∞,

h(∞) = h1, x → ∞,
(2.1)

h0 and h1 being constants.
According to linear wave theory, the motion is described by the velocity potential

Φ(x, y, t) = Re{φ(x, y)e−iωt},

where φ satisfies

φxx + φyy = 0, (x, y) ∈ D := {−∞ < x < ∞, −h(x) < y < 0},
φn ≡ φz + h′(x)φx = 0, −∞ < x < ∞, y = −h(x),

φy − Kφ = 0, −∞ < x < ∞, y = 0,

⎫⎪⎬⎪⎭ (2.2)

in which φn denotes the normal derivative on y = −h(x) and K = ω2/g. It has been
assumed here that h(x) is single-valued and differentiable. However, we will later
present results for bed shapes where these assumptions are violated and in these cases
D denotes the domain occupied by the fluid and the bed condition is just φn = 0. The
reason for setting the problem in the form (2.2) is that it connects directly with theory
developed later.

If we define k0 and k1 by

K = ki tanh(kihi), i = 0, 1,
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then the far-field behaviour of φ can be determined by separation of variables in (2.2)
and we choose

φ(x, y) ∼
{

{A0e
ik0x +B0e

−ik0x} c(k0h0) cosh k0(y + h0), x → −∞,

{A1e
−ik1x + B1e

ik1x} c(k1h1) cosh k1(y + h1), x → ∞,
(2.3)

in which A0 and A1 are the given amplitudes of incident waves and the complex
amplitudes B0 and B1 of the scattered waves are to be found. The normalizing factors
are taken to be

c(kihi) =

{
h−1

i

∫ 0

−hi

cosh2 ki(y + hi) dy

}−1/2

.

The scattering process can be summarized through the matrix S, defined by(
B0

B1

)
= S

(
A0

A1

)
, S =

(
R0 T1

T0 R1

)
, (2.4)

Ri and Ti being the respective reflection and transmission coefficients. Porter &
Chamberlain (1997) provided a simple proof that

SS = I, (2.5)

leading to well-known identities due originally to Kreisel (1949).
We now follow Fitz-Gerald (1976) and Evans & Linton (1994) by mapping the

domain D into a domain D of constant height in the (ξ, η)-plane by means of the
conformal transformation z = F (ζ ), where z = x + iy and ζ = ξ + iη. In fact we
choose D := {−∞ <ξ < ∞, −1 <η < 0} and arrange that y = 0 transforms to η =0.
The boundary value problem (2.2) therefore becomes

ϕξξ + ϕηη = 0, −∞ <ξ < ∞, − 1 <η < 0,

ϕη = 0, −∞ <ξ < ∞, η = − 1,

ϕη − f (ξ )ϕ = 0, − ∞ <ξ < ∞, η = 0,

⎫⎬⎭ (2.6)

in which ϕ(ξ, η) = φ(x, y) and f (ξ ) = KF ′(ξ ) is real-valued, positive and continuous.
As indicated already, the main obstacle to progress in (2.2), the condition on the bed,
has been simplified in (2.6) to the extent that it is easy to satisfy it exactly.

The mapping function must be such that F (ζ ) → h(±∞)ζ as ξ → ±∞, so that

f (ξ ) →
{

f0 ≡ Kh0, ξ → −∞,

f1 ≡ Kh1, ξ → ∞.
(2.7)

Therefore (2.3) corresponds to

ϕ(ξ, η) ∼
{

{A0e
iκ0ξ + B0e

−iκ0ξ } c(κ0) cosh κ0(η + 1), ξ → −∞,

{A1e
−iκ1ξ + B1e

iκ1ξ } c(κ1) cosh κ1(η + 1), ξ → ∞,
(2.8)

where κi = kihi is the positive real root of fi = κi tanh κi and

c(κ) =

{∫ 0

−1

cosh2 κ(η + 1) dη

}−1/2

= 2{κ/(2κ + sinh 2κ)}1/2.

In all of the examples given later the condition (2.7) is satisfied because

f (ξ ) = f (±∞) + O(e−δ±|ξ |), ξ → ±∞, (2.9)

where δ± > 0, and we therefore assume that this property holds in general.
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The boundary-value problem consisting of (2.6) and (2.8) can be formulated as
an integral equation (if h0 = h1) or a system of coupled integral equations (if
h0 �= h1) and solved numerically, the approach being similar to that of Porter &
Porter (2000). Fitz-Gerald (1976) adopted a related strategy by deriving an integro-
differential equation that led to numerical results. Evans & Linton (1994), however,
took advantage of the fact that the function f occurring in the transformed problem
(2.6) varies relatively slowly, even for rapid variations in the bed shape, and replaced
it with a piecewise-constant function to produce good approximations.

Our present approach is to suppose that f is slowly varying and to approximate
the solution of (2.6) and (2.8) in such a way as to provide relatively simple estimates
of the components of the scattering matrix S.

3. An approximation
The approximate solution of (2.6) is generated by using an equivalent variational

principle in conjunction with the Rayleigh–Ritz method. One aim of the approxima-
tion is to remove the η dependence from the process by postulating the form of ϕ

in a particular way and for the immediate purpose we can consider the problem
on an arbitrary finite domain with a < ξ <b, say. This avoids the need to form a
functional that is consistent with the radiation conditions and converges on the infinite
domain. The radiation conditions will be applied to the resulting approximation in due
course.

We therefore let

L(ψ) =
1

2

∫ b

a

{ ∫ 0

−1

(ψ2
ξ + ψ2

η ) dη − f (ξ )(ψ2)η=0

}
dξ. (3.1)

The first variation of L is

δL =

∫ b

a

{
((ψη − f (ξ )ψ)δψ)η=0 − (ψηδψ)η=−1 −

∫ 0

−1

(ψξξ + ψηη)δψ dη

}
dξ

+

[∫ 0

−1

ψξδψ dη

]ξ=b

ξ=a

. (3.2)

As we are not at present concerned with the conditions on the lateral boundaries, we
may choose δψ = 0 at ξ = a and ξ = b for −1 � η � 0, and it then follows that L is
stationary at ψ = ϕ if and only if ϕ satisfies equations (2.6) for a < ξ <b. Therefore,
finding the stationary point of L is equivalent to finding a solution of (2.6) and an
approximation to the stationary point is an approximation to a solution.

We base our approximation on the solution of (2.6) with f = fi , where fi is
constant. In this case the normalized eigenfunction of the boundary-value problem
associated with propagating waves having wavenumber κi is

vi(η) = c(κi) cosh κi(η + 1), (3.3)

where κi now denotes the positive real root of

fi = κ tanh κ (3.4)

for any value of fi . This extends the notation has already been used in (2.8) in relation
to the far-field values of f . It is convenient to express the normalization by using the
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inner product

(u, v) =

∫ 0

−1

uv, ||u||2 = (u, u), (3.5)

in terms of which ||vi || = 1.
The simplest approximation that makes use of the solution for a constant fluid

depth is the modulated propagating wave based on (3.3) and (3.4) and given by

ϕ(ξ, η) ≈ ψ(ξ, η) = χ(ξ )v(ξ, η), v(ξ, η) = c(κ(ξ )) cosh κ(ξ )(η + 1), (3.6)

in which κ(ξ ) is the positive real root of

f (ξ ) = κ(ξ ) tanh κ(ξ ). (3.7)

The dependence of ψ on η is therefore approximated by the eigenfunction v at
each value of f . The approximation may be regarded as a continuous counterpart
of the discretization used by Evans & Linton (1994). They replaced f by a finite
sequence of constant values fi and, for each fi , considered only the propagating wave
contributions. However, by using the solution of Weitz & Keller (1950), Evans &
Linton did incorporate the effect of evanescent modes across the junctions between
two different values of f and this contrasts with the exclusion of decaying modes
from the present approximation. The structure of (3.6) is analogous to that leading to
the modified mild-slope equation of Chamberlain & Porter (1995), which is developed
from the original problem (2.2) under the restrictive condition that the depth h is
slowly varying. Here we assume that f is slowly varying, in the sense that |f ′| 
 κf

for all ξ , and our expectation, which is realized in the examples given later, is that
the ‘stretching effect’ of the transformation will allow the present approximation to
be applied to steep bed profiles, despite its simple form.

A differential equation for the function χ in (3.6) follows by making L stationary
with respect to arbitrary variations δχ that vanish at ξ = a and ξ = b. As the
approximation ψ satisfies the exact boundary conditions on η = 0 and η = −1, we see
from (3.2) that

δL = −
∫ b

a

δχ

∫ 0

−1

{(χv)ξξ + (χv)ηη} v dη

and therefore the differential equation implied by δL = 0 is∫ 0

−1

{(χv)ξξ + (χv)ηη} v dη = 0.

Using the fact that vηη = κ2v and rearranging, we find that

(||v||2χ ′)′ + {||v||2κ2 + (v, vξξ )}χ = 0,

in the notation of (3.5). Now ||v|| = 1, from which successive differentiations give
(v, vξ ) = 0 and (v, vξξ ) = −||vξ ||2. Therefore χ satisfies

χ ′′ + {κ2 − ||vξ ||2} χ = 0, (3.8)

which holds for |ξ | < ∞.
An alternative form of (3.8) follows by writing

v(ξ, η) = ||w||−1w, w = w(f, η) = cosh κ(η + 1). (3.9)

This notation makes use of (3.7) to define κ = κ(f ) and it is easily shown that

κf = (cosh(2κ) + 1)(sinh(2κ) + 2κ)−1. (3.10)



Approximations to wave scattering 285

Since ||w|| ||w||f =(w, wf ) then

vξ = {||w||−1w}f f ′ = {||w||−1wf − ||w||−3(w, wf )w}f ′, (3.11)

where f ′ = df/dξ , and therefore (3.8) can be written as

χ ′′ + {κ2 − C0(f )f ′2} χ = 0, (3.12)

in which

C0(f ) = ||w||−4{||w||2||wf ||2 − (w, wf )2}. (3.13)

Now the counterparts of w that are associated with evanescent waves in the case
of constant f are w(n) = cos κ (n)(η + 1) for n ∈ IN , where κ (n) denote the real positive
roots of f = −κ tan κ . The functions w, w(1), w(2), . . . are orthogonal and form a
complete set, and since (vξ , w) = 0 follows from (3.11), vξ can be expressed solely in
terms of w(1), w(2), . . . . Therefore ||vξ ||2 = C0(f )f ′2 can be regarded as a correction
term that compensates for the omission from the approximation of the eigenfunctions
w(n) related to evanescent waves.

For the purpose of applications, we need to evaluate C0(f ) explicitly. Clearly,
||w|| = c−1(κ) by construction and wf = κf (η + 1) sinh κ(η + 1). Straightforward
calculations then give

8κ2(w, wf ) = κf {2κ cosh(2κ) − sinh(2κ)},
8κ3||wf ||2 = κ2

f {2κ2 sinh(2κ) − 2κ cosh(2κ) + sinh(2κ) − (4/3)κ3}

and we can use these together with (3.10) to evaluate the coefficient C0 in (3.12). We
thereby arrive at the expression

C0(f ) =
(cosh r + 1)2

(sinh r + r)4

{
sinh2 r

r2
+ 2

sinh r

r
− (2 cosh r + 1) +

2

3
r sinh r − 1

3
r2

}
,

in which r = 2κ is an abbreviation.
It follows from (2.9) and (3.7) that

f ′(ξ ) ∼ O
(
e−δ±|ξ |), κ ′(ξ ) ∼ O

(
e−δ±|ξ |), |ξ | → ∞. (3.14)

Therefore (3.12) makes it explicit that the second term in the coefficient of χ does
not contribute in the far field. As we would expect, the approximation (3.6) has the
exact far-field behaviour and we take

χ(ξ ) ∼
{

A0e
iκ0ξ + B0e

−iκ0ξ , ξ → −∞,

A1e
−iκ1ξ + B1e

iκ1ξ , ξ → ∞,
(3.15)

which is consistent with (2.8).
We can rewrite (3.12) wholly in terms of κ as

χ ′′ + κ2{1 − D0(κ)κ ′2} χ =0, D0(κ) = C0(f )/(κκf )2, (3.16)

which is less explicit in its dependence on the mapping function. However, it does
allow the terms in the coefficient premultiplying χ to be examined. It can be shown
that the non-negative function D0 is such that D0(κ) = 4/45 + O(κ2) as κ → 0 and
that D0(κ) ∼ 4κ−4 as κ → ∞; numerical evidence shows that D0 is a decreasing
function. Therefore, if |κ ′| is not too large the second component in the coefficient of
χ in (3.12) is relatively small and χ is then approximated well by the equation

χ ′′ + κ2 χ = 0. (3.17)
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This simplification, which we will use numerical tests to examine later, is consistent
with the interpretation of ||vξ ||2 in (3.8) as a correction term.

3.1. Analytic solution

The boundary-value problem consisting of (3.12) and (3.15) can be solved numerically
by truncating the domain, and we will consider this approach later. Alternatively, an
analytic solution can be obtained by adapting the method given in Porter (2003). For
this purpose we use the generic form

χ ′′ + (κ2 − 2κe(ξ ))χ = 0, (3.18)

which turns out to be algebraically convenient and can be applied to each of the
equivalent forms (3.8), (3.12) and (3.16) by appropriate choices of e. It will be assumed
that (3.14) applies so that e(ξ ) decays exponentially as |ξ | increases.

Let p1(ξ ) and p2(ξ ) be defined by

2iκp1 = χ ′ + iκχ, −2iκp2 = χ ′ − iκχ. (3.19)

Since χ = p1 + p2 and χ ′ = iκ(p1 − p2) then

p′
1 + p′

2 = iκ(p1 − p2),

whilst (3.18) implies that

{iκ(p1 − p2)}′ + (κ2 − 2κe)(p1 + p2) = 0.

The previous two equations can readily be rearranged as

p′
1 = ap1 − bp2, p′

2 = −bp1 + ap2, (3.20)

in which

a = iκ + b, b = − κ ′

2κ
− ie.

The further transformations

q1 = α−1p1, q2 = α−1p2, α(ξ ) = exp

{∫
a(ξ ) dξ

}
, (3.21)

reduce (3.20) to the simple forms

q ′
1 = −m q2, q ′

2 = −m q1, (3.22)

in which

m(ξ ) = b(ξ )α(ξ )/α(ξ )

is exponentially small for sufficiently large |ξ | in the current applications of (3.18),
as a consequence of the assumption (2.9). This construction therefore decouples the
far-field components in the solution of (3.18) from the near-field effects, the latter
being determined by solving (3.22).

Before completing the solution we need to define α more precisely. We take

α(ξ ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
c0κ

−1/2(ξ )exp

{
iκ0ξ + i

∫ ξ

−∞
{κ(s) − κ0 − e(s)} ds

}
, ξ < 0,

c1κ
−1/2(ξ )exp

{
iκ1ξ − i

∫ ∞

ξ

{κ(s) − κ1 − e(s)} ds

}
, ξ > 0,
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where

c0 = exp

{
−i

∫ 0

−∞
{κ(s) − κ0 − e(s)} ds

}
, c1 = exp

{
i

∫ ∞

0

{κ(s) − κ1 − e(s)} ds

}
.

We note that the integrands are exponentially small as |s| → ∞ and that this choice
ensures that α(ξ ) is continuous for ξ ∈ (−∞, ∞) and such that

α(ξ ) ∼
{

c0κ
−1/2
0 eiκ0ξ , ξ → −∞,

c1κ
−1/2
1 eiκ1ξ , ξ → ∞.

Applying the transformations (3.19) and (3.21) to (3.15), we find that

q1 → c−1
0 κ

1/2
0 A0, q2 → c−1

0 κ
1/2
0 B0 as ξ → −∞, (3.23)

and

q1 → c−1
1 κ

1/2
1 B1, q2 → c−1

1 κ
1/2
1 A1 as ξ → ∞. (3.24)

To construct the solution of (3.22) we note that if (X1, X2)
T satisfies the equations,

that is, if

X′
1 = −mX2, X′

2 = −mX1, (3.25)

then so does (X2, X1)
T . Therefore we can write(

q1

q2

)
= E1

(
X1

X2

)
+ E2

(
X2

X1

)
. (3.26)

If we choose

X1 → 1, X2 → 0 as ξ → −∞, (3.27)

then

E1 = c−1
0 κ

1/2
0 A0, E2 = c−1

0 κ
1/2
0 B0, (3.28)

follow at once from (3.23). Further, the Wronskian W of the solutions (X1, X2)
T and

(X2, X1)
T is

W ≡ |X1|2 − |X2|2 = 1, (3.29)

so the pair is linearly independent and X1(ξ ) is non-vanishing for ξ ∈ (−∞, ∞).
Applying (3.24) to (3.26) and using (3.28) we find that

−
(

c−1
0 κ

1/2
0 X

∞
2 −c−1

1 κ
1/2
1

c−1
0 κ

1/2
0 X

∞
1 0

)(
B0

B1

)
=

(
c−1
0 κ

1/2
0 X∞

1 0

c−1
0 κ

1/2
0 X∞

2 −c−1
1 κ

1/2
1

)(
A0

A1

)
and, after some simplification is carried out using (3.29), the scattering matrix defined
in (2.4) takes the form

S =Γ −1XΓ , (3.30)

where

Γ =

(
c−1

0 κ
1/2
0 0

0 c−1
1 κ

1/2
1

)
, X =

(
X∞

2 (X
∞
1 )−1 −(X

∞
1 )−1

−(X
∞
1 )−1 −X

∞
2 (X

∞
1 )−1

)
and the notation

X∞
i = lim

ξ→∞
Xi(ξ )

has been introduced.
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It remains to solve (3.25) subject to (3.27) and this is easily achieved. Integration
gives

X1 = g − MX2, X2 = −UMUX1,

where the operators M and U are defined by

(MX)(ξ ) =

∫ ξ

−∞
m(s) X(s) ds, (UX)(ξ ) = X(ξ ),

and g(ξ ) = 1. It follows that X1 satisfies the linear Volterra equation X1 = g + (MU )2X1

and the solution is given by the Neumann series (see, for example, Porter & Stirling
1990)

X1 =

∞∑
n=0

(MU )2ng,

whence

X2 = −U

∞∑
n=0

(MU )2n+1g.

We remark here that operator theory can be used to put this deduction on a secure
footing and, in particular, assure convergence of these series. Computations have
confirmed that the series in fact converge very rapidly, as will be clear from results
given later in this section.

If we define the sequence γn by

γ0(ξ ) = 1, γn(ξ ) = (MUγn−1)(ξ ) =

∫ ξ

−∞
m(s)γn−1(s) ds(n ∈ IN), (3.31)

then

X1(ξ ) =

∞∑
n=0

γ2n(ξ ), X2(ξ ) = −
∞∑

n=0

γ2n+1(ξ ). (3.32)

Finally, we use (2.4) and (3.30) with (3.29) to give the magnitudes of the scattering
coefficients in the forms

|R0|2 = |R1|2 = |X∞
2 |2(1 + |X∞

2 |2)−1 = 1 − |X∞
1 |−2,

|T0|2 = (κ0/κ1)(1 + |X∞
2 |2)−1, |T1|2 = (κ1/κ0)(1 + |X∞

2 |2)−1.

}
(3.33)

3.2. Numerical implementation

In order to determine the direct numerical solution of the scattering problem from
(3.12) it is convenient to express the equation as the first-order system(

χ(ξ )
χ ′(ξ )

)′

=

(
0 1

−(κ2 − C0(f )f ′2) 0

)(
χ(ξ )
χ ′(ξ )

)
. (3.34)

From the assumed far-field forms of χ(ξ ) as ξ → ±∞ given by (3.15), which are
assumed to hold exactly for ξ � a and ξ � b we can easily determine the relations

PT χ (a) = 2iκ0A0e
iκ0a,

P
T
χ (a) = −2iκ0B0e

−iκ0a

}
(3.35)

and

QT χ(b) = 2iκ1A1e
−iκ1b,

Q
T
χ(b) = −2iκ1B1e

iκ1b,

}
(3.36)
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where PT = (iκ0, 1), QT = (iκ1, −1) and χT (ξ ) = (χ(ξ ), χ ′(ξ )). The parameters a and
b are established numerically by an iterative process in which a and b assume a
sequence of increasingly negative and positive values until quantities of interest have
converged to within a required tolerance. This process is very quick (typically one or
two iterations) since, outside some interval, the dependence of the solution on x is
exponentially small – see (3.14).

Now the general solution of (3.34) can be written as

χ(ξ ) = Ψ (ξ )E,

where E is an arbitrary constant vector and Ψ (ξ ) is a 2 × 2 matrix, the columns of
which are linearly independent solutions of the equation. Using this expression in
(3.35) and (3.36) to eliminate E, we recover the scattering matrix formulation given
in (2.4) with

S = − DK−1

(
P

T
Ψ (a)

Q
T
Ψ (b)

)(
PT Ψ (a)

QT Ψ (b)

)−1

KD

where

D =

(
eiκ0a 0
0 e−iκ1b

)
, K =

(
κ0 0
0 κ1

)
.

The relationship (2.5) can easily be seen to be satisfied, whatever Ψ (a) and Ψ (b).
The scattering matrix is thus determined by the value of Ψ (b) as a function of the

prescribed matrix Ψ (a), the most obvious choice for the latter being the 2 × 2 identity
matrix. Thus the columns of the matrix Ψ (b) are obtained by solving two initial-value
problems for (3.34) over the range a � ξ � b, one with χ(a) = 1, χ ′(a) = 0 and the
second with χ(a) = 0, χ ′(a) = 1. A standard numerical integration solver can be used
for this purpose.

A second method of determining the solution of the scattering problem uses the
analytic solution derived in § 3.1. The aim is not to provide a computational approach
that is comparable to the direct numerical solution but to determine the accuracy of
the simple explicit approximations that are given by small values of N . There are two
sources of error in calculating the exact expressions for the reflection and transmission
coefficients by means of (3.33). The first is in the numerical approximation of the
improper integrals defining α(ξ ) and the sequence γn(ξ ). In our results, the aim has
been to calculate these integrals to five-decimal-place accuracy. The second source
of error is in the truncation of the infinite series defining X∞

1 and X∞
2 in (3.32).

When γn(ξ ) has been calculated recursively from (3.31) for n= 1, . . . , N then N will
be referred to as the truncation parameter. Consequently, if N is even, |R0| will be
defined in terms of X∞

1 and if N is odd, X∞
2 will be used to define |R0|. Hence, the

lowest-order approximation will be for N = 1 when X∞
2 = − limξ→∞ γ1(ξ ) and then for

N = 2, X∞
1 = limξ→∞ γ2(ξ ) and so on.

3.3. Examples

Mapping functions

We shall concentrate on three different families of bed profile including some special
cases of the mappings considered by Fitz-Gerald (1976).

The first bed shape we consider is generated by the transformation

h−1
0 F (ζ ) = ζ + (πβ)−1(ε − 1) ln(1 + eβπζ ),
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Figure 1. A selection of bed profiles for each of the three mappings with varying values of
β (shown against curves): (a) the Roseau profile, (b) the shoaling profile, α = 1

2
π and (c) the

ridge profile. In each case the depth ratio ε = 1
2
.

where the parameter β ∈ (0, 1) and the far-field depth ratio ε = h1/h0 is assumed to
satisfy ε ∈ (0, 1). The corresponding free-surface variation is

f (ξ ) = Kh0(1 + εeβπξ )/(1 + eβπξ ). (3.37)

This mapping was originally used by Roseau (1976) who exploited its particular
form to determine what is still the only known explicit and exact expression for the
modulus of the reflection coefficient for the unapproximated linearized water wave
equations over a variable bed, which (in the current notation) is given by

|R0| = |R1| =
∣∣∣∣sinh(κ0 − κ1)/β

sinh(κ0 + κ1)/β

∣∣∣∣ . (3.38)

The bed profile consists of a smooth monotonic transition from the depth h0 to the
depth h1 < h0, the parameter β controlling the width of the transition. As β → 0 the
transition width increases indefinitely and as β → 1 the bed steepens and eventually
forms an overhang (see β = 0.9 in figure 1a).

It is worth briefly remarking upon the limiting value of β = 1, since this appears
to have been overlooked in previous work on the Roseau profile. The mapping for
β = 1 is a highly singular limit of the family of mappings since it represents a semi-
infinite horizontal plate of zero thickness submerged to a depth h1, detached from
an infinite horizontal bed of depth h0. Clearly, with β = 1 (3.37) is still well-defined
and a solution can be found to the problem in the ζ -plane. This solution, however,
corresponds to an unphysical scattering problem in the z-plane, since the mapping
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of the point ζ = − i to infinity under the plate in the z-plane implies an unprescribed
source of mass flux under the plate.

The second of the mappings we consider also represents a family of shoaling bed
profiles from the depth h0 to the depth h1 <h0 over a transition width determined
again by a parameter β , where now β ∈ (0, 1]. For β =1, the change from the depth
h0 to h1 occurs by means of a plane slope making an angle α to the positive x-axis.
This linear bed profile is often named after Booij (1983), who used it to assess the
accuracy of the mild-slope equation of Berkhoff (1976) and Smith & Sprinks (1975).
In this case

f (ξ ) = Kh0

(
1 + επ/αeβπξ

)α/π

(1 + eβπξ )α/π
. (3.39)

For the particular value α = 1
2
π (with β = 1), the transition from the depth h0 to h1

occurs by means of a vertical step (see Fitz-Gerald 1976, with γ = 1 in his mapping,
and Evans & Linton 1994) and for α ∈ ( 1

2
π, π) there is an overhanging bed profile.

For β < 1 we recover the surface variation function (3.37) of the Roseau (1976)
mapping as α → π and for each α � π decreasing values of β result in a smooth
profile of increasing width which tends to infinity as β → 0.

In general the mapping corresponding to (3.39) above cannot be determined
explicitly. However, if α = 1

2
π (as considered by Fitz-Gerald 1976) we find that

h−1
0 F (ζ ) =

2ε

πβ
ln

[
εw2(ζ ) + w1(ζ )

(1 − ε2)1/2

]
− 1

πβ
ln

[
w2(ζ ) + w1(ζ )

w2(ζ ) − w1(ζ )

]
,

in which

w1(ζ ) = (1 + ε2eβπζ )1/2, w2(ζ ) = (1 + eβπζ )1/2.

Finally, a family of bed elevations in the form of symmetric ridges with h1 = h0

which protrude to a maximum height a above h0, are also considered by Fitz-Gerald
(1976) (by taking l = L0 = 0 in his paper). Here, the relevant mapping function is
given by

h−1
0 F (ζ ) = ζ +

1

πβ
ln

[
1 − sin2 ρ tanh

(
1
2
πβζ

)
+ cos ρ

(
1 − sin2 ρ tanh2

(
1
2
πβζ

))1/2

1 + sin2 ρ tanh
(

1
2
πβζ

)
+ cos ρ

(
1 − sin2 ρ tanh2

(
1
2
πβζ

))1/2

]
,

(3.40)

where cos ρ = sin( 1
2
πβε)/ sin( 1

2
πβ), with ε = 1 − a/h0 as before representing the ratio

of minimum to maximum fluid depths, and this leads to

f (ξ ) = Kh0 cos ρ
(
1 − sin2 ρ tanh2

(
1
2
βπξ

))−1/2

(note the typographical error in Evans & Linton 1994 in the power of the final term).
Here β ∈ (0, 1] again represents the transition width of the topography. Letting β → 1
reduces the elevation to a thin vertical barrier of length a and as β → 0, the bed
gradient tends to zero as the width of the ridge tends to infinity.

The actual curve defining the bed is given parametrically from the mapping function
F (ζ ) by

x(ξ ) + iy(ξ ) = F (ξ − i), −∞ < ξ < ∞. (3.41)

When F (ζ ) cannot be found explicitly (as in the case of a shoaling bed of general
angle α, for example) but the function f (ξ ) is known and tends to Kh0 as ξ → −∞,
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Figure 2. Boundaries of the error, (a) maxKh0
{||R0| − |R0|exact|} and

(b) maxKh0
{||R0|approx − |R0|exact|}, for the Roseau profile in (β, ε) parameter space.

the formula

z

h0

=
x(ξ )

h0

+i
y(ξ )

h0

= ξ+

∫ ξ

−∞

{
(Kh0)

−1f (ξ ′) − 1
}

dξ ′−i

∫ 1

0

(Kh0)
−1f (ξ−iη′) dη′, (3.42)

in which the integrals can be approximated numerically, can be used to determine the
bed profile.

We remark that the mapping function F (ζ ) is not needed to determine either the
reflection and transmission coefficients or the bed profile. Since only dz/dζ = F ′(ζ )
is required, the task of developing new mappings is not as difficult as it might first
appear.

The three different types of bed profile are illustrated in figure 1 for various values
of β , having been computed using (3.41).

Error assessment for the Roseau profile

We can use the explicit result (3.38) of Roseau (1976) to perform a rigorous
investigation of the accuracy of the present method over a range of parameter values.
This will also enable us to assess the relative merits of the approximate versions of the
method. Thus, we shall regard the numerical solution of the full differential equation
(3.12) as being the unapproximated version. The reduced equation (3.17) provides us
with a substantially simplified version of (3.12) and its success relies upon C0(f )f ′2

being small in comparison with κ2, which is certainly to be expected if the original
bedform is slowly varying.

In figure 2(a) we illustrate the error (maximized over Kh0) between the values of
|R0| computed from the unapproximated equation with the exact results of Roseau
given by (3.38). This is achieved by sketching contours of the surface generated by the
error in (β, ε) parameter space. These marked contours act as dividing lines between
regions of error. In figure 2(b), a similar plot is given for the reduced version of
the equation, (3.17). Clearly the method performs very well over almost the entire
range of parameters, with accuracy only dropping below 0.01 when both ε is small
and β is close to one. In such situations, there is a large ratio between the depths
at infinity (and incidentally the maximum value of |R0| is large) whilst the bed
profile throughout the whole region where the error is greater than 0.01 contains an
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Figure 3. Boundaries of (a) maxξ {|f ′(ξ )|/Kh0} and (b) max{Kh0,ξ}{C0(f )f ′2/κ2} for the
Roseau profile in (β, ε) parameter space.

overhang. For moderate to small steepness in the bed profiles the present method
works exceptionally well.

As remarked previously, the success of the method is due to the way in which
the transformation z = F (ζ ) maps large bed gradients into much smaller gradients in
the function f (ξ ). Thus, in figure 3 we show certain dividing lines in the values of
M = maxξ {|f ′(ξ )|/Kh0} for the Roseau profile across the same range of parameters
as in figure 2. There is a clear correspondence between the error in the values of |R0|
and the value of M . Comparison with other exact results presented later on confirms
the link between the value of M and the error, both qualitatively and quantitatively.
Thus, if M < 0.5 one can expect results to within 0.01 of the true result, and an extra
decimal place in accuracy is gained when M < 0.28 and so on.

In figure 3(b) we show dividing lines in the value of the quantity C0(f )f ′2/κ2,
maximised over all ξ and Kh0 in (β , ε) space. The reduced version of the differential
equation neglects the contribution of this term on the basis that its value is much less
than unity. It can be seen that it does indeed only make a relatively small contribution
across all values of β and ε, which is at its largest when f ′/Kh0 is largest. It is of
no suprise that the reduced equation is more successful at imitating the results of the
unapproximated version when these values decrease towards zero.

We next compare, in figure 4(a, b), results for the reflected amplitudes obtained
using the analytic solution of § 3.1 with the exact values of Roseau, the aim here
being to determine the effect of the truncation of the infinite series defining |R0|
upon their accuracy. If the terms in the series have been calculated exactly, these
expressions for |R0| are expected to converge to the solution of the full equation
as more terms are included in the series. A one-term approximation (i.e. N = 1) is
shown in figure 4(a) by the solid lines, and the dashed lines are the corresponding
calculation with e(ξ ) = 0. With N = 3 it can be seen in figure 4(b), with reference to
figure 2(a), that the results have essentially converged to the direct numerical solution
of the corresponding equation. Numerical errors due to a rather crude numerical
computation of certain improper integrals affect the results when both the error is
small and also when β is small and consequently the bed transition width is large.
We have omitted results with N = 2, which, according to the convention outlined in
§ 3.2, corresponds to defining |R0| in terms of X∞

1 and produces far greater error than
for N = 1 which defines |R0| in terms of X∞

2 = − γ1(∞).
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Figure 4. Boundaries of maxKh0
{||R0|N − |R0|exact |}, the difference in reflected amplitudes

between the exact solution and the truncated series with (a) N = 1 (overlaid dashed lines
corresponding to taking e(ξ ) = 0) and (b) N = 3 terms in (β, ε) parameter space.

It would therefore appear that truncation to a single term produces fairly good
approximations to the reflection coefficients, which are more sensitive to the shoaling
ratio than the steepness of the bed. See figure 4(a), where, for example, we observe
that provided the shoaling ratio is less than 2:1, we expect a maximum error over
all frequencies of less than 0.002 in |R0| even when the bed slope becomes vertical
in places (ε = 0.5, β = 0.9 is shown in figure 1). Furthermore, the simplification
that arises from neglecting the e(ξ ) term (which corresponds to using the reduced
differential equation) appears to have little effect on the results. A version of the
single-term approximation is given in the conclusions.

We remark that, if (3.37) is used in the condition |f ′| 
 κf that f be slowly
varying, general qualitative deductions can be made relating the accuracy of the
approximation to β and ε. These deductions are consistent with, but inevitably less
precise and useful than, the error estimates that we have derived by comparing exact
and approximate solutions.

Other results

In figure 5(a, b) |R0| is plotted against Kh0 for the shoaling bed profile given by the
free-surface variation in (3.39) with α = 1

2
π, for a range of values of β and two shoaling

ratios of ε = h1/h0 = 0.5 and 0.1. In each case results for β = 1, corresponding to
a vertical step in the bed, are compared with those of Porter (1995) who was able
to obtain accuracy to five decimal places using an integral equation formulation of
the problem which exploited the rectangular geometry. In this most extreme case,
M = maxξ {f ′(ξ )/Kh0} =0.38 for ε = 0.5 and M = 0.6 for ε = 0.1. With reference to
the earlier discussion it is not surprising that the agreement between the ‘exact’ results
and those obtained from this method are not so good, but acceptable estimates are
nevertheless obtained. The other curves in figure 5(a, b) are for a decreasing sequence
of values of β � 0.7. The values of M for ε = 0.1 and ε =0.5 decrease as β is reduced
and are M = 0.26 and M =0.41 (respectively) for β =0.7, the implication being that
those results are in much closer agreement than those for β = 1.

The reflected wave amplitude corresponding to the special case of the plane slope,
for which f (ξ ) is given by (3.39) with β = 1, is displayed in figure 6. The ‘exact’
solution for this bed profile was derived by Booij (1983) using a numerical method
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Figure 6. Reflection coefficient for the Booij bed profile: h1/h0 = 1
3
, Kh0 = 0.6, length of

sloping bed is l. The crosses represent ‘exact’ results from full linear theory.

for the parameter values h1/h0 = 1
3
, Kh0 = 0.6, l denoting the length of sloping

bed, and it has become a standard test problem against which to measure the
accuracy of approximation techniques. However, the ‘exact’ solution used in figure 6
is provided by the integral equation method of Porter & Porter (2000). The high
accuracy of the present approximation, although impressive, is in part due to the
fact that the Booij profile is incapable of assessing the effects of non-zero bed
curvature on approximations and these can be significant. The mapping function is
not given explicitly in this case but, as we remarked earlier, only its slope is required to
approximate the scattering properties. Bender & Dean (2003) have recently considered
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Figure 7. Reflection coefficient for symmetric bed profiles given by the mapping (3.40) with
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represent ‘exact’ results for the vertical barrier.

(Kh0, β, a/h0) (1, 1, 0.5) (0.1, 1, 0.5) (1, 1, 0.9)

ODE (full) 0.1537 0.0680 0.6061
ODE (reduced) 0.1530 0.0679 0.6045
Step approx. 0.1529 0.0679 0.6042
Exact 0.1533 0.0680 0.6054

Table 1. Comparison between ‘exact’ results of Porter & Evans (1995) for |R0| in the case of
scattering by a thin vertical barrier, and the solution to the full equation (3.12) and the reduced
version (3.17). Also shown are the results of Evans & Linton’s (1994) ‘step approximation’
method with N = 100 discretizations.

scattering by a number of piecewise-linear bedforms, including a trench with sloping
sides, to which the present method may readily be applied by using the slope of the
corresponding Schwarz–Christoffel mapping function.

Results for the mapping function (3.40) that describes a symmetric ridge are given in
figure 7. We have also included, in table 1, for the limiting case β = 1 of a thin vertical
barrier a comparison between the ‘exact’ results (accurate to the number of decimal
places quoted) of Porter & Evans (1995) based on integral equation techniques and
the present method (including the reduced version of the differential equation) at three
sets of parameter values chosen to allow Evans & Linton’s (1994) step approximation
with N = 100 discretizations, described earlier, to be included. The present method
produces extremely accurate results for the frequency range 0 < Kh0 � 1 covered
in the table but for higher frequencies it does not perform so well, as illustrated in
figure 7. There, with β = 1, the maximum values of M = |f ′|/(Kh0) are 0.3 and 0.6
for h1/h0 = 0.5 and 0.1 (respectively). In the former example, the relatively poor
quality of the results obtained by solving the differential equation may be explained
by the large value of |f ′′|, not experienced in the previous mappings considered. This
substantiates the earlier comment on the shortcomings of the Booij bedform as a
reliable test case.
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4. More general topography
The obvious drawback in the method described so far is that it is restricted to

topography for which there is a conformal mapping. We now suppose therefore
that the given depth function can be written as h(x) = h(0)(x) − h(1)(x), where h(0)

corresponds to a known mapping (which we continue to denote by z = F (ζ ) for
convenience) such that y = −h(0)(x) maps onto η = −1, and h(1) > 0 represents
a slowly varying component of the topography. It is assumed that h(1)(x) → 0 as
|x| → ∞, which ensures that (2.1) holds. The whole bedform y = −h(x) maps onto
η = −d(ξ ) � −1, say, where d(ξ ) → 1 as |ξ | → ∞ and d(ξ ) is slowly varying.

We therefore envisage a more general topography than hitherto in which the steep
component is taken account of by the conformal mapping and slow variations about
this component remain in the boundary condition on the transformed bed. This
structure is confirmed by the transformed boundary value problem

ϕξξ + ϕηη = 0, −∞ < ξ < ∞, −d(ξ ) < η < 0,

ϕη + d ′(ξ )ϕξ = 0, −∞ < ξ < ∞, η = −d(ξ ),

ϕη − f (ξ )ϕ = 0, −∞ < ξ < ∞, η = 0.

⎫⎬⎭ (4.1)

Here f (ξ ) = KF ′(ξ ) as before and our assumptions imply that (2.7) and (2.8) remain
in force. The problem therefore generalizes (2.2) and (2.6) and includes both as special
cases.

A modification of our previous method is used to approximate the solution of (4.1)
and we give the essential steps, using the same notation as before to represent the
corresponding quantities. The functional L defined in (3.1) is modified to

L(ψ) =
1

2

∫ b

a

{∫ 0

−d(ξ )

(ψ2
ξ + ψ2

η ) dη − f (ξ )(ψ2)η=0

}
dξ,

and its first variation is

δL =

∫ b

a

{
((ψη − f (ξ )ψ)δψ)η=0 − ((ψη + d ′(ξ )ψξ )δψ)η=−d(ξ )

−
∫ 0

−d(ξ )

(ψξξ + ψηη)δψ dη

}
dξ +

[∫ 0

−d(ξ )

ψξδψ dη

]ξ=b

ξ=a

. (4.2)

Therefore L is stationary at the solution of (4.1), assuming that δψ = 0 at ξ = a, b

as usual.
The approximation corresponding to (3.6) is

ϕ(ξ, η) ≈ ψ(ξ, η) = χ(ξ )v(ξ, η), v(ξ, η) = s(κ(ξ ), d(ξ )) cosh κ(ξ )(η + d(ξ )) (4.3)

in which κ(ξ ) is now the positive real root of

f (ξ ) = κ(ξ ) tanh(κ(ξ )d(ξ )). (4.4)

This parallels the earlier approximation, the η dependence in ψ being the eigenfunction
v that corresponds to propagating waves with f and d constant, at each local value
of f and each local depth d . The normalizing factor s in v will be chosen later.

Using (4.2) we readily find that the effect of applying the variational principle
δL = 0 to the approximation (4.3), with δχ = 0 at ξ = a, b, is the equation∫ 0

−d(ξ )

((χv)ξξ + (χv)ηη) v dη + d ′(ξ )((χv)ξ v)η=−d(ξ ) = 0.
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This can be rearranged in the form

(||v||2χ ′)′ + {κ2||v||2 + (v, vξ )ξ − ||vξ ||2}χ = 0, (4.5)

in which the revised inner product is defined by

(u, v) =

∫ 0

−d(ξ )

uv.

The local dispersion relation (4.4) can be regarded as defining the function
κ = κ(f, d) with first derivatives

κd = −2κ2(2κd + sinh 2κd)−1, κf =(1 + cosh 2κd)(2κd + sinh 2κd)−1. (4.6)

Thus

vξ = vdd
′ + vf f ′,

and similarly for (v, vξ )ξ , leading to the version

(||v||2χ ′)′ + {κ2||v||2 + (v, vd)d
′′ +(v, vf )f ′′ + ((v, vd)d − ||vd ||2)d ′2

+ ((v, vd)f + (v, vf )d − 2(vd, vf ))d ′f ′ + ((v, vf )f − ||vf ||2)f ′2}χ = 0 (4.7)

of (4.5).
We note on setting d = 1 in (4.7) that the equation (3.12) derived earlier owes its

relative simplicity to the normalization ||v|| =1, which implies that (v, vf ) = 0, and
(3.12) then follows using (3.9). This is the only choice of scaling that removes the term
involving f ′′ and leads to the simplified version (3.17) of (3.9). On the other hand if
we let f = constant, (4.7) reduces to the modified mild-slope equation

(||v||2χ ′)′ + {κ2||v||2 + (v, vd)d
′′ + ((v, vd)d − ||vd ||2)d ′2}χ = 0,

which approximates the solution of the boundary value problem (2.2) when the
original notation is restored. The standard form derived by Chamberlain & Porter
(1995) corresponds to the choice s = sech κd in (4.3), which follows Berkhoff (1976)
and subsequent authors, and has the advantage that ψ(ξ, 0) = χ(ξ ) is proportional
to the free-surface elevation. The alternative scaling in which s is such that ||v|| = κ−1

leads to the simplified version of the modified mild-slope equation,

(κ−2χ ′)′ + {1 − U0(d)d ′2}χ = 0,

U0(d) = ||u||−4k−2{||u||2||ud ||2 − (u, ud)
2}, u = u(d, η) = cosh κ(η + d),

which was derived in Porter (2003) and parallels (3.12).
We can therefore simplify (4.7) when either d or f is constant, by different choices

of the normalizing factor s. It is perhaps worth drawing attention here to the essential
difference between these two special cases, which is that the integral defining the inner
product involves d(ξ ) in the lower limit.

In the general case that we are interested in here, we take ||v|| = 1 in order to
preserve the form of the earlier equation (3.12) and, in particular, the applicability of
the earlier analytic solution. To implement this normalization, we write

v = ||w||−1w, w = w(f, d, η) = cosh κ(η + d).

A straightforward calculation then shows that (4.7) can be expressed in the form

χ ′′ +
{
κ2 − 1

2
||w||−2d ′′ − C0f

′2 − C1d
′2 − C2f

′d ′}χ = 0, (4.8)
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which is the extension of (3.12). Here, C0 is given by (3.13), although it now depends
on f and d because of the change in w, and

C1 = ||w||−4
{

||w||2||wd ||2 −
(
(w, wd) + 1

2

)2}
,

C2 = ||w||−4{2||w||2(wf , wd) − (w, wf ) − 2(w, wf )(w, wd)}.
Evaluating the inner products arising here, we find that

4κ ||w||2 = r + sinh r, 8κ2(w, wf ) = (r cosh r − sinh r)κf ,

8κ2(w, wd) = (r cosh r − sinh r)κd + 2(cosh r − 1)κ2, 8κ3||wf ||2 = Aκ2
f ,

8κ3(wf , wd) = Aκf κd + Bκ2κf , 8κ3||wd ||2 = Aκ2
d + Bκ2κd + 4(sinh r − r)κ2,

where

6A = 3r2 sinh r − 6r cosh r + 6 sinh r − r3, 2B = 2r sinh r − 2 cosh r + 2 − r2,

r = 2κd and κf and κd are given by (4.6).
We note that (4.8) applies only where d ′ is continuous and that the jump condition

2||w||2[χ ′] = [d ′]χ,

which easily follows from the differential equation, applies across locations where it
is not continuous. The notation [ ] denotes the jump in the included quantity. This
means that the approximation ψ ≈ ϕ is such that ψξ is discontinuous where d ′ is, a
feature of the standard mild-slope equation (see Porter 2003, for example).

4.1. An example

We provide just one set of results illustrating the application of the theory developed
in this section. We concentrate on the Booij profile involving a plane slope of angle
α = 1

4
π connecting the level depths h0 < h1 = 1

3
h0. Thus the free-surface variation

is defined by (3.39) with α = 1
4
π and β = 1. In the mapped ζ -plane we replace the

horizontal bottom of the fluid, η = − 1, by the variable bed profile η = − d(ξ ), where

d(ξ ) =

{
1 − 1

20
(1 + cos(π(ξ − c))), |ξ − c| � 1,

1, |ξ − c| > 1,

which represents a symmetric protrusion in the interval c − 1 <ξ <c + 1 rising with
continuous gradient from the level η = − 1 whose maximum height is just one tenth
of the width of the strip (in the ζ -plane). This small-amplitude perturbation certainly
conforms with theory developed above.

In this case, and more generally, the bed shape in the physical plane is then
implicitly given by

x(ξ )/h0 + iy(ξ )/h0 =F (ξ − id(ξ )).

When the mapping function F (ζ ) is not known, (3.42) can be used with the upper
limit on the second integral replaced by d(ξ ). The physical bed shape is therefore
given by an inverse procedure, although it is possible to derive an effective algorithm
for determining the function d(ξ ) from a given h(x).

Returning to the specific example considered here, the value of c is given the
discrete values 0, 1

2
, 1 and 3

2
, which has the effect in the ζ -plane of shifting the cosine-

shaped protrusion along the ξ -axis. The resulting bed profiles in the physical plane
are illustrated in figure 8(a). Curves showing the variation of |R0| with wavenumber
resulting from each value of c is shown in figure 8(b). For example, when c = 0, there
is a significant modification of the bed which smoothes the otherwise sharp join at the
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Figure 8. Reflection coefficient for sloping bed profiles given by the mapping function (3.38)
with α = 1

4
π, β = 1, ε = 1

3
upon which a cosine profile d(ξ ) = 1− 1

20
(1 + cos(π(ξ − c))), |ξ − c| < 1

is superimposed with (i) c = 0 (long dashed); (ii) c = 1
2

(short dashed); (iii) c = 1; (iv) c = 3
2
.

The unperturbed profile, d(ξ ) = 1 is also shown in (b) (solid line).

bottom of the plane slope. However, its effect on the reflected amplitude is negligible.
As the values of c increase, the protrusion is mapped further up the slope to the point
where for c = 3

2
it has the effect of rounding off the sharp join at the top of the slope.

The variation in |R0| is now more pronounced and, although the modification to
the original Booij bed profile is relatively small, the slight reduction in the minimum
value of h(x) is evidently significant.

5. Conclusions
The reflection and transmission of surface waves by varying topography has been

considered by means of a conformal mapping technique originally devised by Fitz-
Gerald (1976) and subsequently used by Evans & Linton (1994). When the two-
dimensional fluid domain is mapped into a strip of constant width, the variable
topography manifests itself in a variable coefficient in the transformed free-surface
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condition which is much more slowly varying than the function defining the original
bed, itself mapped to the lower boundary of the rectangular strip. The property of slow
variations in the free-surface coefficient is exploited by using a variational principle
as the basis of an approximation in the spirit of that used by Chamberlain & Porter
(1995) (for example) to derive the modified mild-slope equation, in which the unknown
function assumes a prescribed separable depth component. The combined effect of
satisfying the bottom condition exactly, an advantage not enjoyed by the traditional
mild-slope approximations, and dealing with a more slowly varying free-surface
condition has allowed us to derive highly effective and straightforward approximations
to wave scattering by variable beds of unrestricted slope.

Of course the difficult task of solving the original problem has not suddenly been
overcome, but it has been considerably assisted by the fact that the mapping itself
contributes significantly towards the solution. It is therefore of no surprise that the
most demanding practical aspect is the derivation of the mapping function for any
given bed profile, even though only the derivative of this function is required to
approximate the scattering properties. Mapping functions which correspond to a
number of families of bed profiles have been described in this paper as a means of
illustrating the accuracy of the approximation and, of course, the range of examples
could have been extended indefinitely. For instance, a family of bed profiles not
included by Fitz-Gerald (1976) with h0 = h1 which represent, for β = 1, a symmetric
triangular protrusion whose sloping sides make internal angles α ∈ (0, 1

2
π] with the

x-axis, is defined by

F ′(ζ ) =

[
(1 + eβπζ )

(1 + µeβπζ )(1 + µ−1eβπζ )

]π/α

,

where µ ∈ (0, ∞) is a parameter which implicitly determines the height of the
protrusion. Choosing values of β < 1 introduces a smoothing of the triangular profile.

However, for a particular bed shape the chance of knowing, or being able to derive,
the exact mapping function is small, whilst the essence of the method is lost if the
mapping is constructed by computational methods (some of which are suggested in
the concluding remarks of Evans & Linton 1994). As a means of addressing this
shortcoming, in § 4 we have described an extension to the main method of the paper
which allows for additional slowly varying perturbations of a fairly general form
about a bed for which a mapping is assumed known. In this generalization, the
basic principles that underpin the success of the original method are retained, and
consequently so is the structure and simplicity of the resulting formulation.

One significant outcome of the present contribution that sets it apart from the vast
body of previous work on this subject is that we are able to provide an accurate
approximation to the reflected wave amplitude for variable topography in the form of
an explicit expression. This comes from the truncation of the infinite series defining
the analytic solution in § 3.2 to just a single term and with e(s) assumed to be small
enough to be neglected. To summarize this result expressed in its simplest form, we
have

|R0| ≈ 1/
√

1 + |X|−2

where

X =

∫ ∞

−∞

(
κ ′

2κ

)
exp

{
− 2iκ̂s − 2i

∫ s

0

(κ(t) − κ̂) dt

}
ds, κ̂ =

{
κ0, s < 0,

κ1, s > 0.



302 R. Porter and D. Porter

Here κ ′ = [(1 + cosh 2κ)/(2κ + sinh 2κ)]f ′ whilst f (s) = κ(s) tanh κ(s) with κ0, κ1

denoting the asymptotic values of κ(s) as s → ∓∞. The reader is referred to the
discussion in § 3.3 for an assessment of the accuracy of this formula. Despite it being
the crudest of the approximations based on the present method we confidently expect
it to outperform any of the traditional one-term mild-slope equations in terms of
accuracy and the range of bed profiles to which it can be applied.
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